4541/2

PRAKTIS BESTARI JUJ PAHANG 2019 MARKING SCHEME SET 1 P2 CHEMISTRY 1 IIII CHEMISTRY 2019

Questio	on No.	Mark Scheme	Sub Mark	ΣMark
1(a)	(i)	H ₂ O	1	1
	(ii)	To achieved stable octet electron arrangement	1	1
(b)	(i)	Water: Covalent bond	1	1
	(ii)	Potassium oxide : Ionic bond	1	1
(c)	(i)	O ²⁻	1	1
	(ii)	2.8.8.1	1	1
(d)	(i)	The boiling point of water is low while the boiling point of potassium oxide is high// The boiling point of water is lower than potassium oxide	1	1
	(ii)	1.The force of attraction between molecule in water is weak // The intermolecular force in water is weak// the electrostatic force between ions in potassium oxide is strong.	1	
		2.Less heat energy is needed to overcome the weak force//more heat energy is needed to overcome the strong force	1	2
		TOTAL	Ģ	
L		SZASZA SZIN		

MARKING SCH	HEME PAPER 2	SET 1 JUJ (CHEMISTRY 2019

Questio	on No.	Mark Scheme	Sub Mark	ΣMark
2 (a)	(i)	Silicone dioxide	1	1
	(ii)	Change colour/sensitive when expose to light/sunlight	1	1
	(iii)	1. Atomic size of iron and foreign atoms are different.	1	
		2. Foreign atoms distrupt the orderly arrangement of iron atom.	1	
		3. If force is applied the layer of atoms difficult to slide easily.		
		[Any two]		2
(b)	(i)	1.Pressure: 200 atm	1	2
		2.Temperature: 450- 550 ^o C 3.Catalyst:Ferum/ Iron/ Fe [Any two]	1	
	(ii)	1.Number of mole of NH ₃	1	
		2. ratio of mole	1	
		3. correct volume of N ₂ with unit n NH ₃ = $\frac{1000}{17}$ // 58.82	1	3

4541/2

 MARKING SCHEME	JEIIFLU	ILEMIST K
2 mol NH ₃ formed from 1 mol N ₂ $//$		
58.82 mol NH ₃ formed from 29.41 mol N_2		
Volume $N_2 = 29.41 \text{ x } 24 \text{ dm}^3 // 705.84 \text{ dm}^3$		
TOTAL	9	I

Questi	on No.	Mark Scheme	Sub Mark	ΣMark
3(a)	(i)	Copper block – atom Water - molecule	1 1	2
	(ii)		1	1
	(iii)	 The particles can move randomly The force of attraction between particles is strong but weaker than solid. 	1	2
	(iv)	1. Number of mole of Helium 2. Correct number of helium atom n He = $\frac{1.2}{24}$ // 0.05	1 1	
		number of atom = $0.05 \times 6.02 \times 10^{23}$ // 3.01×10^{22}		2
(b)		 Diffusion Particles of cake smell move randomly in between air particles. 	1 1	
		 From high concentration region to low concentration Region 	1	3
	1	TOTAL	1	.0

Question	n No.	Mark Scheme	Sub Mark	ΣMark
4(a)		Heat change when 1 mol of metal is displace from it salt	1	
		solution by a more electropositive metal.		1
(b)	(i)	use polystyrene/plastic cup	1	1
	(ii)	The blue colour become colourless// brown solid is	1	
		formed/deposited		1
(c)		1. No heat change	1	
		2. Reaction is not occurs// silver is less electropositive than	1	
		copper		2

MARKING SCHEME PAPER 2 CHEMISTRY SET 1 JUJ PAHANG 2019

2

(d)	(i)	1.Heat change, H	1	
		2. Change in temperature, Θ	1	
		3.Correct highest temperature with unit	1	3
		H = 42 X 0.5 kJ// 21 kJ //42000 x 0.5 kJ// 21000 J		
		$\Theta = \frac{42000}{100} \ge 4.2 \text{ °C}//5 \text{ °C}$		
		Highest temperature = $3.28 + 5 \text{ °C}//33 \text{ °C}$		
	(ii)	1. No. of mole of copper(II) sulphate	1	
		2. correct mass of magnesium with unit	1	2
		n $\text{CuSO}_4 = \frac{0.5 x 100}{1000} / / 0.05$		
		mass Mg = $0.05 \times \frac{24g}{1.2g}$		
	I	TOTAL	1	.0
		4		

3

Questi	on No.	Mark Scheme	Sub Mark	ΣMark
5(a)		Standard solution	1	1
(b)	(i)	The volumetric flask can measured the volume of solution accurately.	1	1
	(ii)	To prevent evaporation of the solution	1	1
(c)	(i)	1. No. of mole of NaOH 2. Correct mass with unit n NaOH = $\frac{1 \times 250}{1000}$ // 0.25 Mass = 0.25 X [23 +16 + 1]g // 0.25 X 40 g // 10g	1 1	2
	(ii)	1. Step of calculation 2. Correct volume with unit 1 X V ₁ = 0.1 X 250 // 0.1 X 250/1 V ₁ = 25 cm ³	1 1	2
(d)	(i)	 Hydrochloric acid is a monoprotic acid while sulphuric acid is a diprotic acid. The number of H⁺ ions in sulphuric acid is twice/double compared to hydrochloric acid. 	1	2

4541/2	2	4 PRAKTIS BESTA MARKING SCHEME		
	(ii)	1. Pour sodium hydroxide solution into conical flask with a	1	
		few drops of phenolphthalein		
		2. Add Hydrochloric acid into conical flask until the pink colour turns to colourless	1	2
		TOTAL	1	.1

Question No.	Mark Scheme	Sub Mark	ΣMark
6(a) (i)	Water that contain calcium ion and magnesium ion	1	1
(ii)	CH ₃ (CH ₂) ₁₄ COO ⁻ // CH ₃ (CH ₂) ₁₁ OSO ₃ ⁻	1	1
(iii)	Cleaning agent X	1	1
(iv)	 Correct formula of reactants and products Balanced equation 2CH₃(CH₂)₁₄COO⁻ + Ca²⁺ → Ca(CH₃(CH₂)₁₄COO)₂ // 	1 1	
	$2CH_3(CH_2)_{14}COO^- + Mg^{2+} \longrightarrow Mg(CH_3(CH_2)_{14}COO)_2$		2
(b)	Effectiveness : cleansing action X is not effective in hard water while cleansing action Y effective in hard water.	1	
	Sources: cleansing action X from animal fat/vegetable oil while cleansing action Y from petroleum.	1	
	Effect to invironment : cleansing action X is a biodegradable while cleansing action Y is non biodegradable // cleansing action X do not cause water pollution while cleansing action Y cause water pollution.	1	3
(c)	 Functional diagram with arrow and heat Label of concentrated Sodium Hydroxide and palm oil Label of sodium chloride 	1 1 1	
	Sodium chloride Palm oil + Concentrated Sodium Hydroxide		3
	TOTAL	1	1

Question No.		Mark Scheme	Sub Mark	ΣMark
7(a)	(i)	 Set I reduction reaction while Set II oxidation reaction Set I purple colour solution change to colourless while Set 	1	
		II colourless solution change to brown	1	
		Set I: 3. Correction formulae of reactants and products	1	
		 Contection formulae of reactants and products Balanced equation 	1	
		MnO_4 + $8H^+$ + $5e \rightarrow Mn^{2+}$ + $4H_2O$		
		Set II:	1	
		 Correction formulae of reactants and products Balanced equation 	1	6
			1	Ū.
		$2Br \rightarrow Br_2 + 2e$		
		1. Set I oxidation number iron increase / +2 to +3 while Set II oxidation number iron decrease / +3 to +2	1	
		 Set I electron flow from Y/Q to X/P through connecting 	1	
		wire while Set II electron flow from X/P to Y/Q through		
		connecting wire.	1	
		 Add sodium hydroxide solution until excess Set I brown precipitate formed while Set II green 	1	
		precipitate formed.		
		5. Set I : Fe^{3+} present	1	
		 6. Set II : Fe²⁺ present 1. Oxidising agent : Hydrogen peroxide // H₂O₂ 	1	6
		 H₂O₂ is electron acceptor // oxidation number of hydrogen 	1	
		decrease // H_2O_2 under goes reduction reaction.	1	
		 Reducing agent : Iodide ion // I ion I ion is electron donor // oxidation of iodine increase // I 	1	
		4. I for is electron donor // oxidation of forme increase // I ion under goes oxidation reaction	1	
		Oxidation reaction	1	
		5. Correction formulae of reactants and products6. Balanced equation	1	
			1	
		Oxidation reaction		
		7. Correction formulae of reactants and products	1	
l		8. Balanced equation	1	8
		TOTAL	2	20

5

		MARKING SCHEME	SET T P2 C	
Questio	on No.	Mark Scheme	Mark	ΣMark
8 (a)	(i)	1.Correct chemical formula of reactants and products	1	
		2. Balanced equation	1	
		3. Number of mole of HCl	1	
		4. Ratio of mole	1	
		5.Correct volume of H_2 with unit	1	5
		$Zn + 2HCl \rightarrow ZnCl_2 + H_2$		
		n HCl = $\frac{0.1 \times 25}{1000}$ // 0.025		
		2 mol of HCl produced 1 mol of $H_2//$		
		$0.025 \text{ mol of HCl produced } 0.00125 \text{ mol of H}_2$		
		Volume = $0.00125 \text{ x } 24 \text{ dm}^3 / 0.3 \text{ dm}^3 / 300 \text{ cm}^3$		
	(ii)	1. Axis labeled with unit		
		2. Correct curve and label		
		Volume of gas/ cm ³		
			1+1	2
	(iii)	1. Experiment III, II, I	1	
	()		_	
		Experiment I and II		
		2. Temperature of experiment II is higher than experiment I	1	
		3. The kinetic energy of particles in experiment II is higher		
		than experiment I	1	
		4. The frequency of collision between H^+ ions and zinc in	1	
		experiment II is higher than experiment I	1	
		5. The frequency of effective collision between H^+ ions and	1	
		zinc in experiment II is higher than experiment I	1	
		Experiment II and III		
		6. $CuSO_4$ is used as a catalyst in experiment III	1	
		7. The presence of catalyst lower the activation energy	1	
		8. more colliding particles can achieved a lower activation energy	1	
		9. Frequency of effective collision between between H ⁺ ions	1	
		and zinc in experiment III is higher than experiment II	_	9

454	1/2
	-/-

PRAKTIS BESTARI JUJ PAHANG 2019 MARKING SCHEME SET 1 P2 CHEMISTRY

(b)	1. The temperature in a refrigerator is lower than room		
	temperature	1	
	2. Bacterial activity is lower in refrigerator	1	
	3. Less toxin produced by bacteria in refrigerator	1	
	4. The rate of fruit spoilage is lower in refrigerator than room		
	temperature.	1	4
TOTAL		20	

Question No.	Mark Scheme	Sub Mark	ΣMark
9(a)	1. Hydrogen easily flammable /explode.	1	
	2. Helium	1	
	3. Helium is lighter	1	
	4. Helium is inert gas// unreactive	1	4
(b)	1. Correct formulae of reactants and products	1	
	2. Balanced equation	1	
	$2 \operatorname{Fe} + 3\operatorname{Br}_2 \xrightarrow{} 2\operatorname{FeBr}_3$		
	3. The reactivity of reaction I is higher than reaction II.	1	
	4. The atomic size of chlorine is smaller than bromine	1	
	5. The forces of attraction of the nucleus toward the electrons		
	is stronger in chlorine atom than in bromine atom	1	
	6. It is easier for chlorine atom to attract electron	1	6
(c)	1. Cut a small piece of lithium using a knife and forceps	1	
	2. Dry the oil on the surface of the lithium with filter paper	1	
	3. Place the lithium slowly onto the water surface in a through	1	
	4. Record the observations	1	
	5. Repeat steps 1-5 using sodium and potassium to replace	1	
		1	
	6. Lithium moves slowly on the water surface	1	
	7. Sodium moves faster and randomly on the surface of water//	1	
	Sodium ignites with a yellow flame	1	
	8. Potassium moves vigorously and randomly on the water		
	surface.// Potassium ignites with a lilac flame // produce	1	
	'pop' sound	1	
	9. Correct formulae of reactants and products10. Balanced equation	1	10
	10. Balanceu equation	1	10
	$2\text{Li} + 2\text{H}_2\text{O} \rightarrow 2 \text{LiOH} + \text{H}_2$		
	TOTAL	2	20

Questic	on No.	Mark Scheme		Sub Mark ΣMark	
10(a)	(i)	1. Cation : $Ba^{2+} // Pb^{2+} // Ag^{+}$	1		
		2. Anion : CO_3^{2-}	1		
		3. $Ba^{2+} // Pb^{2+} // Ag^{+}$ reacts with SO_4^{2-} ion to form insoluble	1		
		salt //			
		Pb^{2+} // Ag^+ reacts with Cl^- ion to form insoluble salt.	1		
		4. $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4 // Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4 //$			
		$2Ag^{+} + SO_{4}^{2-} \rightarrow Ag_{2}SO4 // Pb^{2+} + Cl^{-} \rightarrow PbCl_{2} //$			
		$Ag^+ + Cl^- \rightarrow AgCl$	1		
		5. CO_3^{2-} reacts with Ca^{2+} / Mg^{2+} ion to form insoluble salt.	1	6	
		6. $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3 // Mg^{2+} + CO_3^{2-} \rightarrow MgCO_3$			
	(ii)	1. Ca^{2+} ion	1		
		2. Mg^{2+} ion	1		
		3. Sodium carbonate // Potassium carbonate	1		
		4. Measure [20-100] cm^3 of river water and pour into a			
		beaker	1		
		5. Measure [20-100] cm^3 of [0.1-2.0] mol dm^{-3} sodium			
		carbonate solution and pour into the beaker	1		
		6. Stir the mixture	1		
		7. Filter the mixture	1		
		8. Double decomposition reaction	1		
		9. Product is calcium carbonate // magnesium carbonate	1		
		10. Product is insoluble	1	10	
(b)		1. Add barium chloride / nitrate solution into salt J	1		
		2. white precipitate formed, SO_4^{2-} present	1		
		3. Add silver chloride solution into salt L	1		
		4. white precipitate formed, CI present	1	4	
			2	20	

END OF MARKING SCHEME